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A new dynamic adaptive grid algorithm has been developed for use in air-quality
modeling. This algorithm uses a higher order numerical scheme—the piecewise
parabolic method (PPM)—for computing advective solution fields, a weight func-
tion capable of promoting grid node clustering by moving grid nodes, and a con-
servative interpolation equation using PPM for redistributing the solution field after
movement of grid nodes. Applications of the algorithm to model problems show
that the algorithm provides solutions more accurate than those obtained with static
grids. Performance achieved in model problem simulations indicates that the algo-
rithm has the potential to provide accurate air-quality modeling solutions at costs that
may be significantly less than those incurred in obtaining equivalent static grid solu-
tions.  (© 2000 Academic Press
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1. INTRODUCTION

The physical and chemical processes responsible for air pollution span a wide ra
of spatial scales. For example, there may be point sources, such as power plants,
are characterized by spatial scales relatively small compared to regional-scale pollu
plumes from such sources. Therefore, to accurately model the transport and chemist
air pollutants, an air-quality model (AQM) must be able to adequately resolve the pertin
spatial scales. This can be achieved by varying the physical grid node spacing in an A
to provide resolution where needed.
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One approach to achieving increased local solution resolution involves using embed
Cartesian grids, or static nested grids, such as those described by Odman and Rt
[1] and Odmaret al. [2]. This approach may be limited by (1) the uncertainty in neste
grid(s) placement(s) since pertinent locations may not be known a priori, (2) the loss
solution accuracy resulting from grid boundary interface problems, and (3) the inability
adjust rapidly to dynamic changes in solution resolution requirements. Another appro:
to achieving local solution resolution involves using grids with moving nodes, i.e., dynan
adaptive grids. In principle, such grids would be continuous and would adjust dynamice
to changing solution resolution requirements. Therefore, use of such grids would not
constrained by the limitations associated with use of nested grids.

Recently, ideas promoting use of dynamic adaptive grids in atmospheric modeling h
gained popularity. Dietachmayer and Droegemeier [3] use a variational formulation
adaptive grid generation equations to compute solutions to test problems. Aletgakn
[4] have used a nested hierarchy of grids, with simultaneous refinement of grids in b
space and time, to resolve the release of hot gas into the atmosphere. Skamarock
Klemp [5] have used a hierarchical grid approach to model a compressible formulatior
the atmospheric flow equations. Toméhal. [6] have investigated the use of an adaptive
unstructured grid method to obtain solutions of test problems of interest in air-qual
modeling.

A grid adaptation algorithm for aerospace applications has been developed by Ber
and McRae [7-9]. This algorithm, called tBynamic Solution Adaptive Grid Algorithm
(DSAGA), uses weight functions constructed from the absolute values of the gradient:
solution variables, along with@enter-of-masscheme, to move grid nodes. These nodes ar
repositioned in a parametric space to avoid the potential for grid-line cross-over. After
repositioning of grid nodes, solution variables are corrected. This correction is comple
using an equation that is obtained by splitting the time-dependent terms describing
movement of the grid nodes from the steady terms of the general conservation laws
moving control volumes. DSAGA has been used to compute unsteady, three-dimensic
turbulent, viscous flows [10-12]. Additionally, Srivasta®aal. [13] have used DSAGA
to compute test cases of interest in air-quality modeling. Recently, Laflin and McRae [:
and Laflin [15] have developed tt®olver-Independent, Efficient r-Refinement Algorithrr
(SIERRA) that provides robust and computationally efficient implementation strategies
grid adaptation algorithms. SIERRA incorporates a solver-independent weight function
a solver-independent solution field redistribution procedure.

This paper describes a new dynamic adaptive grid algorithm suitable for use in AQN
This algorithm was built on the foundation provided by the DSAGA algorithm of Bensa
and McRae [7-9]. However, the new algorithm extends the DSAGA framework by utilizir
thepiecewise parabolic methd®PM) developed by Collela and Woodward [16] for com-
puting the advective fluxes and the fluxes resulting from grid movement. Moreover, the n
algorithm incorporates the SIERRA weight function and solution field redistribution pre
cedure. This new algorithm is called tBgnamic Solution Adaptive Grid Algorithm—PPM
(DSAGA-PPM) [17].

Given a fixed number of grid nodes, DSAGA-PPM can determine automatically
appropriate spatial distribution of these nodes and can update this distribution in respc
to changes in the evolving numerical solution. Thus, this algorithm can adequately resc
any evolving solution features. In general, to provide a given level of solution accura
DSAGA-PPM would require fewer grid nodes than uniform or embedded grids since
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would cluster most of the grid nodes around solution features needing refinement and
few grid nodes elsewhere. DSAGA—PPM can distribute grid points in all grid directiol
simultaneously and can be applied to steady or unsteady flows and maintain temg
accuracy.

Following the description of DSAGA-PPM, this paper examines its ability to calcula
accurate solutions. For each of the test problems, results were obtained using DSA(
PPM and the correspondirgtatic Grid Algorithm—PPMSGA—-PPM), which is obtained
by deactivating the grid adaptation procedures in DSAGA-PPM. These results are comp
to reveal the advantages of using DSAGA-PPM. The SGA-PPM solutions are obtainet
a uniformly spaced grid that is identical to the starting uniformly spaced grid used in t
corresponding DSAGA-PPM application.

2. GOVERNING DIFFERENTIAL EQUATIONS

Before describing DSAGA-PPM, it is useful to review the theoretical foundations
air-pollution modeling. McRaet al. have provided a comprehensive review of this subjec
[18]. A summary of this review is presented in this section.

In an arbitrary, time-varying, spatial regiéi(t), located in the Euclidean spa&e€ and
bounded by (1), a spatial pointis givenby = {x, y, z} € Q(t). InQ(t) the conservation

of mass for each o chemical specieg (X, t),l =1,..., N is expressed as
aq
§+V'(VCI)=V'(K‘VCI)+RI(CL--wCN)‘f‘S(X,t); I=1...,N. (1)

In (1) ¢ is the mass concentration of pollutdnmass of pollutant/volume of air);
V(X,t) = (u, v, w) is the specified wind fieldK is a second-order, diagonal, turbulent
diffusivity tensor;R, is the net generation of chemical spediéy chemical reactions; and
S is the rate of source addition for the chemical speLidhe system of equations (1) is
referred to ashe atmospheric diffusion equatiftB8] and constitutes the governing system
for an AQM.

The atmospheric diffusion equation is solved with specified initial and boundary cc
ditions. For each of species, an initial distributiong (X, 0) is specified and conditions
at the boundary are imposed by inhomogeneous mixed Neumann and Dirichlet boun
conditions. A discussion of the initial and boundary conditions can be found in Srivastz
[17] and Reynold&t al.[19].

In air-pollution modeling, (1) and the associated initial and boundary conditions are
propriately transformed to accommodate the resolution of meteorological (boundary la
cloud) and geographical (topography) features. Discussions of the various transformat
can be found in Kasahara [20], Toehal.[21], and McRaeet al.[18]. Since the purpose
of this paper is to illustrate the applicability of DSAGA—PPM to air-pollution modeling vi
model test problems, such transformations are not examined herein.

3. DSAGA-PPM

DSAGA-PPM includes the finite-volume procedures for advancing the governing syst
(i.e., Eg. (1) and the associated initial and boundary conditions) in time using a n
uniform grid, for moving the grid nodes to region(s) requiring solution refinement, at



440 SRIVASTAVA, MCRAE, AND ODMAN

for conservatively redistributing the solution field over the resulting adapted grid. The
procedures are briefly described below. Details of these procedures can be found in [1

3.1. Time Advancement of the Governing System

In the AQMs based on finite-volume methods, the governing system, with transform
vertical coordinate, is usually advanced in time on static Cartesian grids with unifol
spacing in the horizontal plane and non-uniform spacing in the vertical direction. Howeyv
in general, a grid adapted by moving nodes will not be uniform. Therefore in DSAGA—PPI
a coordinate transformation is applied to the governing system to relate the physical don
expressed in Cartesian coordinatesy, z) to a computational domain expressed in genera
curvilinear coordinates™, m = 1, 2, 3. The grid in the general curvilinear coordinates is
assumed to be uniform and unit-spaced. This procedure allows the solution of the gover
system to be obtained on arbitrary physical grids (i.e., grids that are curved in space anc
aligned to shapes of existing solution features). The mapping between the two coordi
systems is given by

EM=£"x,y,2; m=123. (2)

As discussed in Roache [22], in general, the most accurate numerical results are obta
if numerical differencing is based on the conservative form of the governing equatiol
Methods for manipulating partial differential equations that preserve conservative proper
are described in Andersost al. [23], Oberkampf [24], and Vinokur [25]. Using these

methods, the conservative form of the transformed atmospheric diffusion equation is gi

by

z§+§i=®+& l=1,...,N, m=123, (3)

where
6=2 l=1,...,N )

J

Eﬂ:(%El—i_é;JFl—i_EzlGl), I—1....N (5)
R = R(C,....cn)/Jd, l=1,...,N (6)

and
§=SX,t/J, I=1...,N (7)

with By = qu — K22, R = v — Kyy%—?/, andG, = qw — K;;22 for diagonalK. The
expressions for the Jacobidnand the metrics of the transformation (2) are available ir
[23].

In general, Eq. (3) represents a system of stiff partial differential equations since
time scales associated with typical chemical transformations are far smaller than th
associated with transport due to advection and turbulent diffusion. Therefore decoup!
transport and chemistry and solving for these processes in sequential steps result in |
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efficient computation of transport. As discussed in [18], Eq. (3) is operator- (or time-) sy
[26] to compute transport, chemistry, and source processes in sequential steps. The spl
of Eqg. (3) is not unique and differs between AQMs. The splitting sequence used in t
work is

g(t+ Al) = LQ LS L gitf L agvc (1), l=1,...,N (8)
C(t + 2At) = LagvldirLg Lo G (t + At), l=1,...,N 9)
where
0
Lagy = {I +dt- I (M0 + 600 + &) / J)} (10)

. 320 ((em(k,. 09
Ldlff = |:| +dt Jaém (<Ex <Kxx 3X>

w4 (g )+ (33 ) /9] a2
Ls =[I +dt-S(X, t)] (12)

LQ =[| +dt'R|(Cl,...,CN)]. (13)

The splitting defined by the relations (8) and (9) is symmetric and, as explained in [18]
second-order accurate.

The remainder of this section develops the application of DSAGA—PPM to the atm
spheric diffusion equation in two dimensions only. Application of this algorithm to th
atmospheric diffusion equation in three dimensions would be a logical extension of
procedures presented in the following sections.

Calculation of two-dimensional advective transporT.he finite-volume representation
of the advection component of (3), with splitting (8) and (9), can be used to compt
two-dimensional advection at+ At as follows:

(al1+lv)i,j - (Elnv>i,j + AtadV(Eladv| - Eladv|

i+1/2,] i—1/2,]

+ FPY —Ff )" =0 (14)

i,j+1/2 i,j—1/2

In the above equations, is the average concentration of chemical speciegell volume
Vi and EfYY and FP% are the net mass effluxes due to advection at cell Side$/2, j
andi, j +£1/2, respectively. The time step for advectiakt,qg,, is bounded by stability
considerations [17]. In afinite volume formulation, the Jacoldiamsimply the ratio of the
volume of the computational cell to the volunyg, of the corresponding physical cell. In the
computational domain, the grid is chosen to be uniform and unit-spaced for conveniel
Consequently, the volume of each computational cell is unity and the Jacobian for each
becomes&. Note that in two dimensiony/ j, is the area of the celll j.

In air-quality simulations, mass conservation of species, monotonicity of the soluti
fields, and a high order of accuracy need to be maintained during numerical computati
The piecewise parabolic methd@®PM)—a numerical scheme for computing advection—
is monotonic, is third-order accurate for variable grid spacing, and is conservative [2
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Therefore, the PPM scheme is used to compute the flﬁ%‘éfandlff‘d"required in(14).The
PPM scheme, developed for modeling fluid flows with strong shocks and discontinuities
a higher order extension of Godunov’s method and uses a parabola as the basic interpol
function in a finite-volume formulation [16]. A comparison of several popular advectio
schemes, including the PPM scheme, can be found in Odman and Russell [28].

In any two- or three-dimensional finite-volume scheme, numerical sources may re:
from errors in differencing of the metrics. As discussed in Hindman [29], such sources co
affect solution quality significantly. To determine the presence of such sourcesitbien
flowtest has been used by Pulliam and Steger, Thomas and Lombard, and others [30—3
this test, each of the dependent variables is initialized with a constant value over the er
grid and then the solution is advanced through one time step with the boundary val
fixed. If the numerics are consistently formulated, then the solution after the end of the ti
step must equal the initial conditions. As discussed in Gielda and McRae [33], an analyt
analysis of discretized difference equations, conducted using uniform flow conditions, yie
any numerical sources resulting from the difference algorithm. Subsequently, these sou
are eliminated by adding terms equal to the negative of the numerical source terms to
difference equations. In DSAGA—PPM, this procedure was used to eliminate the advec
numerical sources, as described below.

For a flow with uniform (or constant) dependent varialdegshe PPM scheme reduces
to the first-order upwind scheme since each cell now has constant (instead of parab
profiles of the dependent variables. Expanding (14) for constant

Atagy- | - gl gl
6I(n+l)|i,j = émi,j TV J_ SERRN. [(jxu + %v)_ﬂ/z _
, i+1/2,]
- (E_Xlu + S—;v) T _ S Tl
J J ity Vi j
2 2
X [(E’%u+éyv> — (g)%u—i-éyv) r. (15)
J I it J I it

Upon inspection of the above equations for constant dependent varighites numerical
source term is identified to be

_A%vﬂuKﬁu+%Q _(ﬁu+%0 T
Vi J J i+1/2,] J J i—1/2,j

i
—A““””K*u+*0 _(%u+%g T. (16)
Vi J J it J I Jiice

Subsequently, the negative of this term is added to (14) to eliminate numerical sources

It should be noted that (16) is a discrete representation of velocity divergence in gen
curvilinear coordinates™, m = 1, 2, 3. While velocity divergence would analytically be
zero for a divergence-free velocity field, (16) may still be non-zero due to approximatio
used in evaluation of metrics.

Calculation of two-dimensional diffusive transporiThe finite-volume representation
of the turbulent-diffusion component of (3), with splitting (8) and (9), can be used to compt
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two-dimensional turbulent diffusion. Accordingly, the turbulent diffusion contribution t

the solution at + At is given by
(@), = (@), ; + Aair (E"| — B[]

If;;iiff’

i+1/2, i-1/2,]

= diff n
+FM = F ) =00 =1 N (17)

In Eq. (17),¢ is the average concentration of chemical spetiescell volumeV, ; and
Edf and F® are the net mass effluxes due to turbulent diffusion at cell sides; and

i j+1/2, respectively. Details on calculation of diffusive fluxes and the diffusive time ste
Atyi, are available in Srivastava [17].

Note that advection and turbulent diffusion are calculated using their own time ste
These processes are synchronized in time to ensure that they advance through the
time period in any solution step. In DSAGA-PPM, this synchronization is accomplish
by computing advection usingjt,g, and then repeatedly applying diffusion usitng (or
a fraction of it) until the total time step for diffusion equal$,g,.

The boundary conditions for species transport are termed eitfilew or outflow de-
pending on the direction of the flow at the grid boundary under consideration. In fluid flc
situations, generally the species concentrations at inflow boundaries are known as a fun
of time. The outflow boundary conditions are generally not known and, therefore, nee
be computed. In DSAGA-PPM, zero-concentration-gradient boundary conditions are u
at outflow boundaries in calculation of advection and turbulent diffusion.

Treatment of emission sourcedvlost emissions are released from either point location
(point sources) or area regions (area sources). In order to determine the incremental c
bution from source emissions into a computational cell, consider a particular cell of b:
areaA,, and uniform heighh(t). Given the mass emission ré&¢ (e.g., kg/s) from a point
source, the corresponding rate of change of concentratitne cell containing this source
is given by

(18)

Note that emissions from area sources are introduced as flux boundary conditions.

Computation of chemistry.In Eq. (1), the term®R,| = 1, ..., N, describe the contri-
butions to the rates of change Wfchemical species concentrations, ¢y, . .., Cy, due to
chemical reactions. At any time, for any spatial point, the rate of change of each spe
concentration due to chemical reactions can be described by a set of coupled, nonli
ordinary differential equations,

d
d—?:R(cl,cz,...,cN), l=1... N (19)
and the associated initial conditions0) = qo,l =1 ...,N.

The functional form of the termR,,| =1, ..., N, can be developed by considering a
homogeneous system in whiblsingle-phase species participatarimeaction steps of the
form

N N
Zaj|0|—>2ﬂj|0|, j=21....m, (20)
I=1 =1
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where the coefficients; , 8; denote the reactant and product stoichiometry, respectivel
in the reaction step. If the reaction rates,;, of them individual reactions are described
by the mass action law

=kJ[¢". i=1..m 1)

wherek; is a temperature-dependent rate constant, then the chemistry source terms
given by

dg m
E=Rl=jz:;(,3j|—(¥j|)rj, l=1,....N. (22)

Atmospheric chemistry mechanisms include reactions with characteristic time scales
differ by orders of magnitude. For such mechanisms, Egs. (22) lead to “stiff” systems
differential equations.

In this workthe asymptotic integration methad Young and Boris [34] is used to solve
the system of equations (22). This method is self-starting, is very fast, and requires mini
storage [18]. In this method, a second-order predictor-corrector scheme that takes
account the stiffness of equations is employed to integrate the system (22). The methoc
been tested against the very accurate chemistry solver EPISODE [35] and has been fi
to provide comparable results at significantly reduced costs [18].

3.2. Grid Adaptation and Solution Correction

In the following sections, procedures for moving the grid nodes to region(s) requiril
solution refinement, and for conservatively redistributing the solution field over the resulti
adapted grid, are described.

Weightfunction formulation. DSAGA-PPM requires aweight functian(x, y, t), which
will be large in regions where grid clustering is necessary to achieve desired solution ac
racy. In a flow with reacting species, these species may undergo complex dynamic trans
mations in time. Therefore, it may not be possible to prediptiori which of the species
would dictate grid adaptation requirements in simulation of such a flow. Moreover, in «
mospheric flows, the chemistry processes in one spatial region may be quite different fi
those in another region. As a result, some of the species may need resolution in one
of the modeled region while other species may need resolution in other part(s). Furtl
these resolution needs may change with time. One possible strategy to ensure ade
grid adaptation in such a flow may be to use a weight function that takes into account
resolution requirements of each of the species included in the chemical mechanism, at
time step in the simulation.

Using the SIERRA formulation, developed by Laflin and McRae [14] and Laflin [15]
weight functions can be designed that are easy to compute and that promote both
node clustering and grid alignment adaptation processes. Using this formulation, a we
function for use in simulations of reacting flows may be expressed as

e
, ¢|=q(\\/’o) , (23)

Wo = Vol+el

Z(A2¢I )o + Wmin
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FIG. 1. Five-point stencil for computing discretized Laplacian.

whereA? is the discrete approximation of the Laplacian operator @, ), represents
the error in the computed value gfat cell centeo with respect to the value atobtained
using interpolation o€, values in the neighboring cells [15]. For thé species(A%¢),
is evaluated by

Nk
(M%), = o) — o(@)o. (24)
k=1
where
Nk
oy = Z(ak). (25)
k=1

In (24), Ny is the number of distinct discrete valugs )k # (¢1)o used in the discrete
approximation of the Laplacian ang, are constant coefficients of the valu@s)y that
define the discrete approximation. As shown in (25), the coefficie0f is oo anda,
depends on the values. In this work, a five-point stencil, shown in Fig. 1, is used to
approximate(A%¢,)o. The boxes in this figure represent the valggs,, and the number
in a box is the value of the coefficieatassociated with that box.

In (23), the parameteax controls weighting of each cell volumé in relation to its size.

If e, is negative then smaller cells will be weighted more than larger cells and vice ver
Thus, choosing,; to be negative may cause smooth flow features to be under-resolv
The parametee, > 0 provides control over the rate of change of the cell volumes in th
grid. If &, > 0 then evacuation of grid nodes from regions of uniform concentration wi
be inhibited and grid orthogonality will be promoted. The parametgy is the minimum
allowable weight function value and is typically set such thaklfdachine zere< wmin <

1. Larger values ofwvmin are chosen if grid adaptation is only needed in regions witl
prominent solution features. The effectsepfe,, andwmi, on grid adaptation can be seen
in Laflin [15]. In this work, the values oé; and e, were chosen to be-1.0 and 0.0,
respectively.

As defined in Eq. (23), the weighi, at cell centeo would include information on the
interpolation error ab in concentration of each of the specleand, therefore, would be
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responsive to resolution needs of each of these speaeblatvever, in a flow with reacting
species, the concentrations of these species may differ by several orders of magnit
Therefore, each of the species-specific componexts) ), in Eq. (23) needs to be scaled
such that (1) the interpolation erraa?g, ), is relatively independent of the magnitude of
a, (2) the scaled A%¢), adequately represents the resolution requiremerdsateach
of the specie, and (3) the scaling process is responsive to the dynamic changes in spe
concentrations. Taking these requirements into consideration, a weight function suitable
use in computations involving chemistry can be developed. This development is descri
below.

Construction of a weight function with the above considerations starts with determinat
of the species-specific SIERRA interpolation error at cell cantgrgiven by

(A%¢)ij =lali—j +0lisn +Clij_1+Glijra—4-alijl. (26)

As mentioned above, the value of the parameteshown in Eq. (23) is chosen to be zero.
Therefore, for exampley|i11; in Eq. (26) is not weighted bV 1/ Vi, ;)®, as required
in Eq. (23).

The concentrations of various species can differ by several orders of magnitude anc
general, would contain computational noise resulting from finite-precision machine cal
lations. The effects of this noise need to be removed from the SIERRA interpolation err
given by Eq. (26) before these errors are normalized and rescaled. In this work, the intel
lation errors are adjusted to remove the computational noise. For each of the species,
adjustment involves normalizing the interpolation error at each cell center by the aver:
value of the species concentration over the domain and setting the normalized value to
in case this value is less than or equal to<110~3. The adjustment is

V9= (th,j)/nn; nn = number of grid cells 27)
=

(A2 = (A% j /G0V (A2%)); /60 > 1E — 03
=0V (A% /9 < 1L.E — 03, (28)

The adjusted interpolation error given by Eg. (28) is normalized using the maximt
value over the domain:

(A%)om = (A2g)7 T Whom = MAX((AZp)7 "), (29)

norm’

This normalization process scales the range of each c(fﬁﬁﬁ)”"““ to be between 0 and
1 and, therefore, satisfies requirement (1) given above.

Note that the presence of a relatively large rangéAf¢,) over the entire grid would
reflect that the spatial distribution of the concentration of spelciegjuires significant
resolution. Since the process of normalization given above compresses the range of
(A?%¢y), it becomes necessary to restore each of these ranges by re-scaling.

First a linear combinationyc; j, of the species-specific interpolation errors is formed a
each of the cell centers,

we j = Z(A DT (30)
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Then this linear combination is re-scaled using

AZ _ .
wcire_scaled: (wCi . U)Cmin) (( ¢)max wmln) + Wnin, (31)
5] ’ (lUCmax - owin)

where

WCmin = MIN(WG |),  WCmax = MAX(wC ) (32)
(A%¢)max = MAX(wporm) Y1 (33)

The re-scaling scheme utilizing Egs. (31) through (33) adjusts the range of values (rr
imum to minimum) of thewc[®**@*%to be betweenvyin and (A%¢)max. SINCe(A%))max
represents the largest SIERRA interpolation error value for all species over the entire ¢
this re-scaling scheme ensures that the resolution requirements of all species over the ¢
grid are represented in the weight function. Thus, requirement (2) given above is satis
Further, the normalization and re-scaling process depends on the time-dependent, spe
specific SIERRA interpolation errors and, therefore, satisfies requirement (3) given ab

Note thatin Eq. (31) the lower end of the rangevafe>*@*4s fixed atwmin. Consequently,
wmin Can be used to control the degree of adaptation (or the amount of grid moveme
Finally, note that the normalizing and re-scaling procedure described above requires «
the selection of a value favn,, by the user. This value is chosen based on the experimer
conducted to obtain an acceptable preadapted grid with nodes clustered around any sol
field features, prior to the first time step in a simulation.

Using thewc{j-sca'e‘,‘ the weight function at a cell centerj is given by [see Eq. (23)]

Vllj+el | wcrescale(T ) (34)

Wi.j = i

The weight function resulting from Eq. (34) may result in highly sheared or skewed gri
in which large cell volumes may exist next to small cell volumes. These large volum
can adversely affect the accuracy of solution calculations in the next time step. Henc
is desirable to obtain smooth grids without highly sheared or skewed cells. Therefore,
weight function resulting from Eq. (34) is smoothed by applying the discretized Laplaci
operator to it [36].

Repositioning of grid nodes.In the adaptive grid procedure described here, repositionir
of the grid nodes is accomplished by a center-of-mass scheme, originally proposec
Eiseman [37]. In this scheme, a grid node is repositioned such that its position coinci
with the center-of-mass of a local cluster of cells, with mass distribution over the grid bei
defined by the weight function. Using this scheme, the new position coordinates of ¢
nodeo are given by

4 4
pew — (Z wi Pi> / Z wi. (35)
i=1 i=1

In (35),P;,i =1,...,4, are the position coordinates in physical space of the centers
the cells that are local to the grid nodeandw;,i =1, ..., 4, are the weights associated
with these cells. Note that in a two-dimensional grid, nodies over the center of mass of
any four contiguous cells.
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Solution redistribution. In DSAGA-PPM, a solver-independent solution field redistri-
bution procedure developed in Laflin [15] is employed. In this procedure, the solution fie
is fixed with respect to an inertial frame while a control volurfe,is allowed to move
arbitrarily through the spatial domain. To describe the motiof dhrough the inertially
fixed solution field, a fictitious grid timdyg, is introduced. The moving control volume is
a function of grid time2 = Q(ty), but is not a function of the physical tim& # Q(t).
Conversely, the solution field is a function of the physical tiches ¢ (t), but is not a func-
tion of grid time,q # ¢ (ty). Using these concepts, Reynolds transport theorem reduces
aconservative interpolation equatidhat is suitable for numerical application [15]. This
equation is

@V)"ott = (qV)“Q+Z o ) (e[ 2 ™), 1=10N, (36)

Ng

wherec, = ¢ (ty) is the average value of over the cell volume&/ = V (ty), Vp|ng+l is the

volume swept by the cell sideduring movement between grid time levelsandng + 1,
andg;, I is the average value @f in V|n*™.

Equatlon (36) |s used to compute the interpolated cell-averaged values for the dey
dent varlablesc, I =1,..., N. To use (36), the values of the volum@gs, V"e+1,
ande|nng values of cell- averaged dependent variables before grid movemérit =
1,..., N; and values 0i§|p|ng ,p=1,...,41=1,...,N are needed. The volumes
Vg, \Notl and\”/p|',]gJrl are computed using the grid node coordinates before and aft
grid movement. Values;,1 =1, ..., N are available either as initial conditions or as a
result of the time advancement of the solution discussed in Section 3.1. However, the va
Ci, |ng+ ,p=1...,41=1,..., N need to be determined. In two-dimensional calcula-
tions, the celland sweepvolumes can be calculated exactly and, therefore, the accuracy(
termination oﬁf'g is entirely dependent on the accuracy of determinatian ¢39+ ,p=
1,...,4,1 =1,..., N. Anerror analysis oo‘,ng+ | =1,..., N, conducted by Laflin [15]
shows that to ensure accurate determinations q)ﬁﬁ'gH p=1....41=1...,N,(Q
grid-node movements need to be restricted and (2) a higher order scheme needs 1
used for computin@|p|ﬂg+l, p=1....4,1=1 ..., N. Accordingly in DSAGA-PPM,
an interim-step procedure [15] is used to increase the accuracy of solution interpolal
while allowing for an arbitrary amount of grid movement, and a higher order scheme, PP
is used to computey [n*, p=1,...,41=1...,N.

In the interim-step procedure the grid time sterl@J = (lg t{;g) is divided into
M smaller interim steps‘ﬁtg If the change in position coordinates of a grid nadever
Aty is AXy = Xng+l — Xgo? then the change in position coordinates of this grid node ove
8ty is given bysX, = (AXo)/M. In DSAGA-PPM, the value oM is chosen such that
during any interim step, the movement of any cell side is restricted to one-half of t
corresponding celllength. The interpolated cell-averaged values for the dependent varial

ng+1

4“““, =1 , N, are obtained by iterative applications of
p 1 - p p
“Agt+Pm __ = +Bm_ 7 |Ng+Pm Ng+Pm _
c° = Jrettn ((C|V)ng I+Z(Vp‘nz+ﬁm,1) (Clp}nZ‘Fﬁml))’ | =1,...,N.
p=1

(37)
In (37), mis the interim-step counter such tmt=1, ..., M; 8, = m/M with 8, =0
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Grid convergence. The center-of-mass scheme, depicted by (35), is a discrete apprt
imation of Poisson’s equation [15]. Therefore, an iterative process is used to obtain
equately converged grid node positions. In each time step, the following steps are te
in order: (1) weights are computed using the SIERRA approach described above; (2) |
nodes are moved using (35); (3) the solution is redistributed as described above; and
check is made on grid convergence. If the grid is converged within a specified tolerar
then the solution is advanced through a new time step, otherwise weights are recomp
and the grid movement—solution redistribution procedure is repeated. In DSAGA-PPN
limit, 8, is set on the maximum movement of grid nodes relative to largest cell side in t
starting Cartesian grid such that

MAX |AX; |

< 8Vi, | (38)
MAX (AX, AY)starting Cartesion grid

where AX; ; is the change in position coordinates of the node If (38) was satisfied,
then the grid was considered to be converged.

Preadaptation. In an air-quality simulation, the domain being modeled will, in general
contain regions with relatively large gradients in species concentrations. Such gradi
may result from complex interactions between emissions from sources, meteorolog
conditions, and atmospheric chemistry. A simulation using DSAGA—-PPM would start wi
a uniform distribution of grid nodes and would modify this distribution based on the spat
resolution requirements of the various species. Consequently, using the starting unif
grid with initial gradients in species concentration can result in an inaccurate calculatior
the solution field in the first time step. In order to remedy this potentiality, a preadaptati
step has been included in the DSAGA—-PPM algorithm. In this step, the starting unifo
grid is preadapted to regions with initial concentration gradients before the solution fiel
calculated in the first time step. In general, this preadaptation is accomplished by compu
weights based onthe initial solution field, moving the grid nodes, checking grid converger
and stopping the preadaptation process once the grid is converged, as described i
previous sections. There could, however, be situations in which the initial solution fie
may not contain any concentration gradients but sources in the domain start emitting a
beginning of the first time step. In such situations, emissions from sources are assu
to occur before the first time step. The preadaptation process is then completed base
the gradients resulting from these emissions, and the solution field is reinitialized w
background concentrations.

4. ADVECTION TESTS

The accuracy of results produced by an AQM depends to a large measure on the a
racy of computation of the advection process, for two reasons. First, horizontal transpol
pollutant species is dominated by advection. Second, advection affects the accuracy o
species concentration data available at the beginning of each chemistry integration stej
these data can have a significant influence on the results of atmospheric chemistry c:
lations. Thus, it is very important that the advection component of an AQM be compult
accurately.

Tests with model advection problems with known analytical solutions were used in t
work to characterize the improvements in accuracy achieved by using DSAGA-PPM.
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each of the model problems, DSAGA-PPM and corresponding SGA-PPM results w
obtained on a CRAY T90 vector-processing machine and then compared.
In this work, following Smolarkiewicz and Rasch [38], the errors in the numerical soll
tions were characterized by the following normalized measures:
EMIN = (c™ — ¢I™) /cI®,  the normalized error in the minimum
value of the solution field; (39)

EMAX = (c™®™ — ™) /c®, the normalized error in the maximum

value of the solution field; (40)
EMAS = (Z cV — Z ceV> / Z c.V, the normalized errorin
the total mass; and (41)

ERMS = \/Z[(c — ce)ZV]/ Z V, the root-mean-square error of

the solution field (42)

Inthe expressions above, min and max refer to the global minimum and maximum valt
respectively, in the solution field; the subscript e stands for the analytical solutiof); and
is the discrete integral over the modeled region. As defined above, EMIN indicates
maximum undershoot in the solution field; EMAX measures the damping or overshc
of the initial solution peak; EMAS indicates the extent of mass conservation; and ERN
indicates overall error in the solution field. In the definitions of EMAS and ERMS, th
integrals are weighted by cell volume to account for the significant cell volume variati
resulting from grid adaptation.

4.1. A Rotating Cone

In this test, the solid-body rotation of a conical distribution is examined in a twc
dimensional region that is 42 km long in both thandy directions. The region is initially
discretized with 43« 43 grid nodes, spaced uniformly. The initial conditions consist of
conical concentration distribution (cone) with a base radius of 4 km and a peak concen
tion of 100 units, centered at coordinates (26.5 km, 21.5 km) in the region. The backgro!
concentration in the region is 5 units. This cone is advected in the counterclockwise dir
tion around the center of the region by a wind with a constant angular velocity of 0.1 rad
The analytical solution of the above problem is a solid-body rotation of the cone [17]. Nc
that the cone presents a relatively complex solution feature with a steep gradient at the
and discontinuities at the apex and at the juncture with the background. It was desir:
to rigorously test the ability of DSAGA—-PPM to represent steep gradients and prodt
monotonic solution fields. Therefore, the peak concentration was increased to 100 unit:
contrast to those used in other works [18, 39, 40], and the background concentration
selected to be greater than zero.

In each of the simulations the Courant Friedrich Levy number (CFL) was set at 0.4.
the DSAGA-PPM simulation, the values of the grid adaptation—related pararagigy8,
and number of smoothing iterations were set.at 803, 3. x 102, and 15, respectively.
Additionally, in the interim step procedure the movement of any cell side was restrictec
one-half of the corresponding cell length. The values of the adaptation parameters were
termined through numerical experiments and were selected to obtain a good preadapted
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FIG. 2. Solution field (a) with oscillations and (b) without oscillations.

Initially, a version of the adaptive grid code without the correction for numerical source
described in Section 3.1, was used. Shown in Fig. 2a is the solution after two time st
obtained with this code. This solution clearly reflects oscillations in the concentration fie
The code was then modified to incorporate the correction for numerical sources descr
in Section 3.1. Shown in Fig. 2b is the solution after two time steps, obtained with t
modified code. This solution is free of oscillations.

Finally, one revolution of the cone is followed using SGA-PPM and DSAGA-PPM. Tt
results shown in Figs. 3a and 3b reflect that 87% of the peak is retained using DSAC
PPM while only 61% of the peak concentration is retained using SGA—-PPM. This illustra
that the adaptive grid locally reduces numerical diffusion and thereby provides better p
concentration maintenance. As shown in Fig. 3c, the nodes of the adaptive grid at the
of the simulation are clustered in the cone and have tended to align with the discontin
at the background juncture.
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TABLE |
A Summary of Error Characteristics for the Simulations of a Rotating Cone

Solution EMIN EMAX EMAS ERMS
SGA-PPM (43x 43 nodes) —1.1E-14 —3.9E-01 —5.7E-07 1.5E-01
DSAGA-PPM (43x 43 nodes) 1.6E-09 —1.3E-01 —1.3E-04 2.9E-02
SGA-PPM (203« 203 nodes) 0 —1.0E-01 4.4E-13 4.8E-02

The error measures introduced above were used to further compare the static and adz
grid solutions. The values of these measures are shown in Table I. The small value of El
for the DSAGA-PPM solution indicates that this algorithm did not introduce appreciak
undershoots as a consequence of improving resolution. Further, the value of EMAS
the DSAGA—PPM solution reflects that the algorithm has maintained global mass w
reasonable accuracy (about 0.01% loss). The values of EMAX for the SGA-PPM ¢
DSAGA-PPM solutions reflect that the adaptive grid maintains solution features be
than the static grid (compare peak values of 87 and 61, seen in Figs. 3b and 3a). Fin
the magnitudes of ERMS reflect that compared to the static grid solution, the adaptive ¢
solution has much less overall (root-mean-square or rms) error.

4.2. Four Rotating Cones

In the second two-dimensional test, the ability of DSAGA-PPM to resolve multip
concentration distributions is examined. In this test, four conical distributions (cone
located in a 4% 42-km two-dimensional region, are advected in the counterclockwis
direction by a wind with a constant angular velocity of 0.1 rad/h. The region is initiall
discretized with 43< 43 grid nodes, spaced uniformly. The initial conditions comprise fou
pollutant cones, each with a base radius of 4 km and a peak concentration of 100 u
centered at coordinates (30.5, 21.5), (20.5, 30.5), (11.5, 20.5), and (21.5, 11.5) in the
dimensional region. The background concentration in the region is 5 units.

In each of the simulations the CFL was set at 0.4. In the DSAGA-PPM simulatic
the values of the grid adaptation—related parameigfs, §, and number of smoothing
iterations were set at & 1072, 4 x 102, and 15, respectively. Additionally, in the interim
step procedure the movement of any cell side was restricted to one-half of the correspon
cell length. These values of the adaptation parameters were determined through nume
experiments and were selected to obtain a good preadapted grid.

The results after one full revolution of the cones, obtained without and with grid adap
tion, are shown in Figs. 4a and 4b, and the corresponding error characteristics are displ
in Table II. A comparison of the error characteristics for the static and the adaptive g

TABLE Il
A Summary of Error Characteristics for the Simulations of Multiple Rotating Cones

Solution EMIN EMAX EMAS ERMS
SGA-PPM (43x 43 nodes) —7.4E-13 —4.6E-01 —3.3E-04 5.0E-01
DSAGA-PPM (43x 43 nodes) 3.9E-06 —2.3E-01 6.3E-04 2.7E-01
DSAGA-PPM (85x 85 nodes) 4.4E-8 —1.3E-01 —8.7E-05 9.6E-02

SGA-PPM (115« 115 nodes) —5.9E-9 —2.0E-01 —2.0E-07 2.4E-01
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FIG. 4. Results for four cones obtained with (a) SGA—PPM and (b) DSAGA-PPM.

solutions yields observations similar to those seen in the previous test case. The DSA(
PPM (1) does not introduce appreciable spurious oscillations (indicated by the low va
of EMIN); (2) maintains solution features better than SGA-PPM (e.g., peak of 77 vers
54 seen in Figs. 4b and 4a); (3) maintains global mass with reasonable accuracy (0.
gain in global mass indicated by EMAS); and (4) provides a solution with less overall (rir
error than the static grid solution. The adaptive grid at the end of the computation, shc
in Fig. 5, is clustered around the solution field features. These observations reflect
DSAGA-PPM is able to resolve multiple zones of interest and provide an accurate solu
field.

The accuracy of any DSAGA—-PPM solution would appear to depend in parton the num
of nodes available for resolving the solution field features. To examine this hypothesi:
simulation of one revolution of the cones was completed using an adaptive grid with 8¢
85 grid nodes. This refined grid provided approximately the same number of grid nodes
solution feature (cone) as the single-cone test case conducted witd3§rid nodes. The



ADAPTIVE GRID AIR-QUALITY MODELING 455

30 =

20

Y - Axis
il

0 10 20 30 40
X - Axis

FIG.5. Adaptive grid after one revolution of the cones.
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FIG. 6. DSAGA-PPM solution obtained using a refined grid with>885 nodes.
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FIG. 7. Adaptive refined (85 85 nodes) grid after one revolution of the cones.

grid adaptation parameters and CFL used in this simulation were identical to those use
the simulation with 43< 43 nodes.

The DSAGA-PPM result after one full revolution of the cones is shown in Fig. 6, and tl
corresponding error characteristics are displayed in Table Il. Acomparison of the error cl
acteristics for the two DSAGA—PPM solutions and Figs. 4b and 6 reflects solution qual
improvement as the number of grid nodes available for adaptation increases. Furthern
by maintaining approximately the same number of grid nodes per solution feature, a
one revolution the values of the cone peaks in the DSAGA—PPM solution for the four cor
are identical to the value of the peak for the single cone (see Figs. 6 and 4b). Finally,
adaptive refined grid at the end of the simulation, shown in Fig. 7, exhibits better resc
tion of the cones than the adaptive grid with 433 nodes (see Fig. 5). A comparison
of Figs. 5 and 7 also reveals that the grid spacings in these figures have the same nu
of nodes in the borders of the domain and in the center. This reflects that DSAGA—PI
has responded intelligently by distributing the extra nodes in the refined grid in the regi
requiring resolution.

5. REACTING POLLUTANT PUFF

Anair-quality modelincludes coupled transport and nonlinear chemistry processes. Tt
processes can interact and significantly alter the distributions of species in time. For
ample, the shape of a puff of pollutants can change constantly due to changes in the
dients and extrema of the pollutant distributions in the puff. Since chemistry associa
with air pollution is, in many cases, nonlinear, the accuracy of the AQM results deper
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TABLE 11l
Initial Concentrations of Species in the Pollutant Puff

Background Peak

Species (molecules/cin (molecules/cr#)
CO 1.00E+12

H,O 2.50E+15

HC 2.50E+09 1.00E+11
HCHO 1.25E+10 5.00E+11
HO, 1.00E+06

NO 2.50E+09 1.00E+11
NO, 2.50E+09 1.00E+11
o(1d) 1.00E-03

O3 5.00E+11

OH 1.00E+05

RO, 1.00E+06

on the local resolution of the concentration changes. Averaging of these changes
large cells may greatly underestimate local concentrations, resulting in lower product
of expected products. Consequently, the ability of DSAGA—PPM to adapt to such chan
can only be seen and evaluated in tests with model problems incorporating chemistr
this section DSAGA-PPM is tested on a model problem in which a pollutant puff u
dergoes advection and chemistry. This model problem is similar to that used by Odr
and Russell [1] and Chock and Winkler [41] in their evaluations of static nested gt
applications.

This model test problem consists of advecting a pollutant puff that initially contains c
located conical distributions of nitric oxide (NO), nitrogen dioxide (Ndormaldehyde
(HCHO), and lumped hydrocarbons (HC) with the peak concentrations shown in Table
Each of these initial distributions has a base radius of 4 km and is centered at coordin
(26.5, 21.5) km in a domain that is 42 km long in both thandy directions. The initial
background concentration for each of the species is also shown in Table Ill. These c
centrations are identical to those used by [1]. The puff is advected in the counterclockv
direction around the center of the two-dimensional domain by a wind with a constant
gular velocity. During advection, the species in the chemical mechanism undergo chernr
transformations that result in formation of ozong)O

Following Hov et al. [42] and Odman and Russell [1], a simple chemical mechanisi
describing production and destruction of troposphegésused in this work. This mecha-
nism is shown in Table V. The solar zenith anglethat appears in the photolysis reactions
of Table 1V is held constant at 72.5This value corresponds to the average zenith ang|
experienced during an equinox day at the equator [1].

The chemistry-induced changes in the peak and background values of NOHREGO,
and G species are shown in Fig. 8 for a time period of 150 s. From this figure it is evide
that rapid transformations of the species occur in the initial 150 s. Accordingly, the ability
DSAGA-PPM to respond to resolution requirements generated by rapid nonlinear chenr
transformations is examined by completing one revolution of the puffin 150 s.

In the absence of diffusion, the analytically exact solution of advection and chemis
processes can be assembled as follows. If only advection is occurring, then in any t
periodst the concentration; of a species is moved from a locati®i to another location
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TABLE IV
A Simplified Chemical Mechanism for Photochemical
Production of Ozone

Reaction Rate
HC + OH — 4RO, + 2HCHO k, = 6.0 x 10°*?
HCHO+ hv — 2HO, + CO J, = 7.8 x 10°5¢7°%7 /cosh
RO, + NO — NO, + HCHO + HO, ks =8.0x 107%2
NO + HO, — NO, + OH ks =83 x 1012
NO, + hv — NO+ O3 Js = 1.0 x 102e79%/cosf
NO + O3 — NO, + O, ke = 1.6 x 1074
O; + hv — 0O, + O(1d) J; =1.9x 10 %e*°/cosh
O(1d) + H,O0 — 20H ke =23 x 10°%
NO, + OH — HNO; ko =10x 10
CO+ OH — CO, + HO, Ko =29 x 10718
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FIG. 8. Changes in concentrations of selected species over 150 s (a) peak concentrations, (b) backgr
concentrations.
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FIG. 9. Preadapted grid reflecting clustering of nodes in and around the pollutant puff.

X2 . On the other hand, if only chemistry is occurring, then the initial concentratior
the species & is simply converted ta,. Therefore, if both advection and chemistry are
present, then the concentrationXgtshould bec;.

For each of the simulations, a reference solution was created using the above proce
Note that a reference solution on a finite-volume grid is simply the discretized representa
of the corresponding analytically exact solution on that grid. Consequently, the appropr
reference solutions were used to assess the accuracy of the simulation results.

For the numerical simulations, the domain was initially discretized witk 43 uni-
formly spaced grid nodes and the CFL was set at 0.4. In the DSAGA-PPM simulation,
values of the grid adaptation—related parametggg ands and the number of smoothing
iterations were setat & 10°°, 3. x 102, and 10, respectively. Additionally, in the interim
step procedure described above, the movement of any cell side was restricted to one-h
the corresponding cell length. These values of the adaptation parameters were detern
through numerical experiments and were selected to obtain a preadapted grid with ¢
closely clustered in and around the puff. This grid is shown in Fig. 9.

Presented in Figs. 10 through 17 are the SGA-PPM and DSAGA-PPM solutions as\
as the corresponding reference solutions, for NO, N&, and HCHO, after one revolution
of the puff. Figure 18 shows the resulting adaptive grid after 150 s with grid nodes cluste
in and around the puff.

It is interesting to qualitatively compare the results of the simulation with the cher
istry results presented in Figs. 8a and 8b. Per these figures, between 0 and 150 <
peak and background NO concentrations drop continuously, and at 150 s the peak
centration is higher than the background concentration. The results in Figs. 10 anc
are consistent with these observations. In each of these figures, the distribution of
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FIG. 10. NO distribution after 150 s in the pollutant puff (a) exact solution on uniform grid, (b) SGA-PPN
solution.

concentration has a valley (formed by the folding-in of the initial peak), the floor of th
valley is higher than the background, and the background is much lower than the st
ing value of about 4 ppb. However, while the NO peak in the DSAGA-PPM solutio
is similar to that in its reference solution, the same is not the case for the SGA—PI
solution.

The valley in the @ profile in Fig. 8a reflects that the peak concentration gidéps
below the background concentration for about 50 s and then starts growings phefi in
Fig. 8b indicates that the background concentrationgf@ains virtually constant. These
figures also reflect that at 150 s the peak concentration @ Bigher than the background
concentration. The results in Figs. 14a, 15a, and 15b are consistent with these observat
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FIG.11. NOdistribution after 150 s in the pollutant puff (a) exact solution on adaptive grid, (b) DSAGA—-PP!
solution.

each of these figures depicts a peak and a valley in concentration. didever, the
SGA-PPMr resultin Fig. 14b reflects that the peakc@ncentration is below the background
concentration. The concentrations of N&nd HCHO, shown in Figs. 8a and 8b, do not
undergo any peak inversions. Correspondingly, the results in Figs. 12, 13, 16, and 17 dc
exhibit any peak inversions.

The above qualitative observations reveal that some of the fine-scale solution struct
for NO and Q are captured in the DSAGA-PPM simulation but not in the SGA-PPN
simulation.

As discussed above, the species profiles resulting from chemical interactions can cor
peaks and valleys. Thus, to obtain an accurate assessment of such profiles, it is impa
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FIG. 12. NO, distribution after 150 s in the pollutant puff (a) exact solution on uniform grid, (b) SGA-
PPM solution.

to be able to characterize these peaks and valleys. Accordingly, some of the error mea:
introduced earlier were modified to provide such characterizations and facilitate comg
isons between the static and the adaptive grid solutions. These modified measures are

CvaIIey _ Cga”ey

EVALLEY = (43)

valley
Ce

eak eak
cPheak— ¢

EPEAK = (44)

peak
Ce
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FIG.13. NO,distribution after 150 s in the pollutant puff (a) exact solution on adaptive grid, (b) DSAGA-PPI
solution.

In addition to these measures, the error in mass, EMAS, and the root-mean-squar:
ror, ERMS, introduced above, are also used to characterize the quality of SGA-PPM
DSAGA-PPM solutions. Note that in the expressions (43) and (44), the sulesstigyids
for the reference solution described above. Thus for each of the DSAGA-PPM and SC
PPM simulations, EVALLEY, EPEAK, EMAS, and ERMS are computed based on tt
corresponding reference solutions.

For the chemical species, initialized as conical concentration distributions, values of
above error measures are shown in Tables V and VI. In Table V, the much lower value
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TABLE V
EVALLEY and EPEAK for the 150-s Simulation of the Puff

SGA-PPM DSAGA-PPM

Species EVALLEY (%) EPEAK (%) EVALLEY (%) EPEAK (%)

HC 2.5E-07 —38.0 4.3E-05 —10.0
HCHO 9.1E-07 —43.0 4.4E-05 -12.0
NO 7.5 —-18.2 8.0E-05 1.8
NO, —1.2E-04 —40.3 —5.6E-05 —-10.5
O; 0.60 -3.4 —5.0E-02 -1.2
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FIG. 14. Os distribution after 150 s in the pollutant puff (a) exact solution on uniform grid, (b) SGA-PPN
solution.
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TABLE VI
EMAS and ERMS for the 150-s Simulation of the Puff

SGA-PPM DSAGA-PPM

Species ~ EMAS (%)  ERMS (%)  EMAS (%)  ERMS (%)

HC 0.23 30.0 0.03 3.9
HCHO —0.26 31.0 0.03 3.9
NO 1.80 28.0 1.8E-03 3.6
NO, -0.18 32.0 0.04 3.9
O; —5.1E-03 0.15 —7.1E-05 0.03
a ™~
T [ ——
// P ) \\2
L a— !
/ \
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FIG.15. Osdistribution after 150 s in the pollutant puff (a) exact solution on adaptive grid (b) DSAGA—-PPI
solution.
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FIG.16. HCHO distribution after 150 s in the pollutant puff (a) exact solution on uniform grid, (b) SGA-PPN
solution.

EVALLEY (%) for the DSAGA—PPM solution for NO and £ndicate that the adaptive
grid algorithm predicts these valleys much better than the corresponding SGA solution (
see Figs. 10, 11, 14, and 15).

The lower values of EPEAK (%) for the DSAGA—-PPM solutions, compared to those fi
the SGA-PPM solutions, for HC, HCHO, NO, NCand Q reflect that the adaptive grid
predicts solution peaks better than the static grid. Note that a negative EPEAK (%) va
indicates that the peak is lower than that in the corresponding reference solution. Note
that a positive value of EVALLEY and a negative value of EPEAK fgri®the SGA-PPM
solution reflect that the valley in this solution is higher and the peak is lower than the
features in the corresponding reference solution. These findings are consistent with the
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Background concentration = 0.51 ppb

Concentration (ppb)

Maximum concentration = 20.40 ppb
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FIG. 17. HCHO distribution after 150 s in the pollutant puff (a) exact solution on adaptive grid, (b) DSAGA
PPM solution.

that the Q profile is not as well developed in the SGA-PPM solution as it should be (s
Figs. 14 and 15).

As seen in Table VI, the low values of EMAS (%) for the DSAGA-PPM and SGA—PP!
solutions reflect that the global mass in each of these solutions compares well with
global mass in the corresponding reference solution. Finally, the much lower magnitu
of ERMS for the DSAGA-PPM solutions reflect that, compared to the static grid solutic
the adaptive grid solutions have undergone less numerical diffusion and have less ov
(rms) error.

The results of this test indicate that DSAGA—-PPM can follow rapid chemical transfc
mations more accurately than the corresponding static grid algorithm.
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FIG. 18. Adaptive grid after 150 s reflecting clustering of nodes in and around the pollutant puff.

6. COMPUTATIONAL PERFORMANCE

As discussed in the previous sections, a solution with a specific level of accuracy car
obtained using either DSAGA-PPM with relatively few grid nodes or a refined grid SGA
PPM with many more nodes. However, to assess the practicality of using DSAGA-PPMN
air-quality simulations, it is useful to obtain an indication of its computational performanc

It is well known that the chemistry calculations consume the majority of the CPU tin
used in an air-quality simulation [43]. Therefore, the reacting pollutant puff model proble
described in this work is appropriate for an assessment of DSAGA-PPM’s computatio
performance. Shown in Table VII are the CPU times and minimum cell sizes associa
with three simulations of this model problem. Two of these simulations used SGA—-PF
and DSAGA-PPM on a grid with 48 43 grid nodes; the third simulation used SGA-
PPM on a refined grid with 12% 127 nodes. All these simulations were conducted on
CRAY T90 machine using a CFL of 0.4, and the code used performs about 320 milli

TABLE VII
CPU Times Associated with Simulations of Reacting Pollutant Puff

Minimum cell size CPU time
Simulation Grid nodes (area units) (s)
SGA-PPM 43x 43 1 33.0456
DSAGA-PPM 43x 43 2.2E-02-3.2E-02 299.0532

Refined grid SGA-PPM 12% 127 1.1E-01 18,726.9411
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floating-point operations per second for an average vector length of about 40 units. N
that in the DSAGA-PPM simulation, the smallest cell size changed with time and ranc
between 0.022 and 0.032 area units.

As shown in Table VII, the cell size in each of the static grid simulations (SGA-PPM
refined grid SGA-PPM) is substantially larger than the smallest cell size in the DSAG,
PPM simulation. This indicates that the extent of resolution of spatial distributions of spec
is much greater in the DSAGA—PPM simulation. Therefore, the grid in the refined gi
SGA-PPM simulation would have to be refined further to obtain a solution with accurs
comparable to that achieved in the DSAGA-PPM simulation. These statements are corr
rated by the results obtained in these two simulations. As an example, the values of the «
metrics EVALLEY, EPEAK, EMAS, and ERMS for £obtained using refined-grid SGA-
PPMare-0.18 x 1072, —0.17 x 1071, —0.53 x 10°°, and 046 x 103, respectively. The
corresponding values obtained using DSAGA-PPM afe75x 1073, —0.12 x 1072,
—0.71x 10°%, and 030 x 10°3. Clearly the metric values are lower for the DSAGA—
PPM result, thereby indicating that the DSAGA-PPM solution is more accurate than
refined grid SGA-PPM solution. These results reflect that refined grid SGA-PPM tal
about 63 times more CPU time than DSAGA-PPM to provide a less accurate solution.

While itis difficult to generalize the above indications, the results do reflect that DSAG/
PPM has the potential to provide accurate air-quality simulations at significant cost savir
In the near future, a more detailed assessment of DSAGA-PPM’s performance will
deduced from realistic air-quality simulations.

7. CONCLUSIONS

In this paper the theoretical foundations of a dynamic adaptive-grid algorithm (DSAG;
PPM) are described. DSAGA-PPM incorporates a weight function formulation that
designed to resolve chemistry-induced changes in species concentrations. Since the
movement and solution interpolation steps in this algorithm are independent of time
vancement of the solution field, the algorithm can be used efficiently with the operator-s
governing equations used in air-quality modeling.

Testing of DSAGA-PPM using a two-dimensional model problem with a rotating conic
distribution shows that the algorithm can resolve dynamic solution features that have st
gradients and discontinuities. An error analysis conducted on the results of this mc
problem obtained with DSAGA-PPM reveals that representation of extrema and ove
error are greatly improved without any significant loss in mass conservation.

The capability of the algorithm to simultaneously resolve multiple features in a soluti
field was examined in another model problem with four rotating conical distributions. /
for the single rotating conical distribution problem, the DSAGA-PPM simulation resul
in improved solution compared to that achieved with the corresponding static grid. Wt
the number of mesh nodes in the four-cones problem is increased to approximately
times that used for the one-cone problem, the DSAGA-PPM simulation provides solut
resolution and accuracy comparable to those achieved in the adaptive grid solution of
one-cone problem.

DSAGA-PPM was also applied to a model problem with a rotating pollutant puff ul
dergoing atmospheric chemistry. This model problem was solved for very rapid chem
changes occurring during transport. Also, reference solutions were computed to facili
comparisons between results obtained using DSAGA-PPM and the corresponding s
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grid algorithm (SGA—PPM). The DSAGA-PPM results, as evaluated by error measures,
much closer to the reference solutions than the SGA-PPM results. This demonstrates
DSAGA-PPM responds to solution resolution requirements generated by rapid nonlin
chemical transformations and transport of distributed atmospheric pollutants.

Finally, a significant computational efficiency advantage may be possible if DSAG/
PPM is used in an AQM with chemistry. The results for the reacting pollutant puff mod
problem indicate that an SGA-PPM simulation using a refined grid withx1227 nodes
takes about 63 times more CPU time than a DSAGA-PPM simulation on a grid with 43
43-nodes, but provides a less accurate solution. Therefore, it is concluded that DSAC
PPM has the potential to greatly improve AQM accuracy or efficiency or both.

The capability of DSAGA—PPM to provide accurate solutions of coupled transport a
nonlinear chemistry processes has been investigated in additional model problems. |
rently, these results are being processed for future publication. In addition, efforts
underway to integrate DSAGA—-PPM with a currently used AQM. Subsequently, a more ¢
tailed assessment of DSAGA-PPM'’s performance will be deduced from realistic air-qua
simulations.
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